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Practical measurements of unloaded Q, for a gap dis-
tance of 0.42 cm were carried out using the impedance
method,® and are shown in Table I together with the
corresponding calculated values.

TABLE 1
COMPARISON OF CALCULATED AND MEASURED VALUES OF Qg
Measured fre- Tuning Corresponding
quency in mega- position Measured theoretical
cycles per second | in centimeters ° Qo
1500 0.85 1125 4700
1600 1.55 1280 4950
1800 1.8 1720 5100
1870 2.50 900 4400
1690 3.49 575 2100

As can be expected, the measured values of the un-
loaded Qg are about 25 per cent of the theoretical values.
This difference is a usual one in case of @y measurements
and is due to losses which are not accountable by the
simple theory. Losses at the shorting end, imperfect
spring contacts, unpolished surfaces, dirt, scratches,
capacitance losses at the gap, no losses etc., account for
this difference.

V. CONCLUSION

The first-order theory of back-to-back tuning has
been derived and shown to agree reasonably well with
the experimental results. Both theory and experiment
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show that the resonator tuning characteristic obtainable
by this method is linear for all practical purposes over a
large frequency range. By appropriate design, various
frequency ranges and tuning slopes can be obtained.
The theoretically expected values of unloaded Qs are in
the vicinity of 4500, while in actual practice values
around 1200 are obtained in the useful range of linear
tuning.

The method is, in general, applicable to any form of
resonant system where quarter-wave line sections can
be employed. For instance, for frequencies in the VHF
range, the method can be applied with Lecher lines; in
the UHF range, coaxial-type lines are more convenient.
The presence of a capacitive gap makes the system
especially adaptable where interaction with an electron
beam is intended. Due to the simple construction, con-
venient size, nonharmonic modes, and good mode sepa-
ration, this method should hold promise of valuable ap-
plication over a wide frequency spectrum.
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Equivalent Circuits for Small Symmetrical

Longitudinal Apertures and Obstacles*
ARTHUR A. OLINER{}

Summary—Formulas based on small aperture and small obstacle
theory are presented for the determination of equivalent circuits for
symmetrical longitudinal apertures and obstacles. These formulas
are then applied to several examples of practical interest, including
aperture discontinuities in trough waveguide and an obstacle array
of interest to anisotropic radomes.

I. INTRODUCTION

HE evaluation of equivalent circuits for wave-
T guide discontinuities often involves the solution of
" a boundary value problem of considerable com-
plexity. For the class of so-called “small” apertures and
obstacles, however, this evaluation becomes particu-
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larly simple when the problem is properly phrased. A
small aperture or obstacle is one which is located far
from the guide walls and whose dimensions are small
compared to a wavelength. Under these conditions, the
distortion of the field lines in the vicinity of such a small
aperture or obstacle, due to some specified excitation,
is essentially independent of the cross-sectional shape
of the containing waveguide, and depends only on the
nature of the excitation and the physical shape of the
aperture or obstacle. The quantity which characterizes
the aperture or obstacle and which is a function only of
its physical geometry and the type of incident excitation
is the polarizability; since the aperture or obstacle is
small compared to wavelength, the polarizability may
be determined under static conditions. The function of
small aperture or obstacle theory is then to relate the
polarizability to the location of the aperture or obstacle
within the containing waveguide and to the appropriate
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incident mode in a fashion such that the equivalent cir-
cuit parameters may be readily evaluated. The value
of this method lies not only in the simple phrasing of the
problem that is permitted, but also in the fact that the
resulting solutions are useful considerably beyond the
strict limitations indicated in the preceding.

Small aperture theory was first formulated by
Bethe,!? and was soon afterwards rephrased by Marcu-
vitz? in a more compact form particularly suitable for
equivalent circuit evaluations. Transverse apertures
(i.e., apertures located in a metal plate which is coinci-
dent with a waveguide cross-section plane) have been
treated by many workers, both with regard to the power
coupled through the hole and in terms of its shunt
equivalent circuit. It has also been long recognized that
the shunt equivalent circuit for a small transverse ob-
stacle may be obtained by Babinet equivalence con-
siderations from the results for a corresponding small
transverse aperture.

For longitudinal apertures (located in a top or side
wall of a waveguide and employed to couple power be-
tween two neighboring waveguides) the picture is not as
complete. Bethe? presents formulas for the power cou-
pled between two adjacent waveguides, and these for-
mulas have been used, for example, in directional cou-
pler designs. Expressions for the scattering matrix ele-
ments in multimode waveguide have also been derived*?
via simple extensions of Bethe's work. Marcuvitz® pre-
sents equivalents circuits which were obtained by small
aperture methods for several examples of waveguides
coupled by longitudinal apertures. Despite the existence
of these solutions, general small aperture formulas for
the equivalent circuit parameters do not appear any-
where and are not available.

In Section II-B of this paper, general expressions are
presented for the equivalent circuit parameters of a
certain class of small longitudinal apertures, these ex-
pressions being deduced from a knowledge of the scat-
tering matrix elements. The longitudinal apertures con-
sidered here are restricted to symmetrical apertures
coupling identical waveguides; this restricted class ap-
plies to a wide number of cases of practical interest, as is
indicated later.

In contrast to the case of longitudinal apertures, small
obstacle theory applicable to longitudinal obstacles has
not been exploited heretofore. Formulas are presented
in Section II-C of this paper which permit the ready
evaluation of the equivalent circuits of small longitu-

1 H. A. Bethe, “Lumped Constants for Small Irises,” M.1.T. Rad.
Lab., Cambridge, Mass., Rept. No. 43-22; March, 1943,

TH. A, Bethe, “Theory of Side Windows in Wavegmdes M.ILT.
Rad. Lab., Cambndge, Mass., Rept. No. 43-27; April, 1943,

3N. Marcuv1tz “Wavegmde Circuit Theory Coupling of Wave-
guides by Small Apertures ? Microwave Res. Inst., Polytechnic
Inst of Brooklyn Rept. No. R-157-47, P1B-106; 1947

A. Judy and D. J. Angelakos, “Mode Selectzve Directional
Couplers, Electronics Res. Lab., University of Cali{ornia, Berkeley,
Ser. No. 60, Issue No. 19; September, 1954,

8 L. B. Felsen, “Analysis of Circular Waveguide Modes,” Micro-
wave Res. Inst., Polytechnic Inst. of Brooklyn, Second Quarterly
Rept., R-394.6-55, PIB-327.6; February, 1955.

s N. Marcuvxtz, ¥ Waveguxde Handbook,” Rad. Lab, Ser., Mc-
Graw-Hill Book Co., Inc., New York, N. Y vol. 10; 1951. See for
example, Sections 6. 6 6.8-6. 10, 7.2-7. 5,
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dinal obstacles which are symmetrical.” Since it is felt
that the derivations of these expressions and those for
longitudinal apertures are in themselves of lesser inter-
est than the results, and since the derivations do not
contain any new features and are somewhat lengthy,
they are not included here.

Several applications of the small longitudinal aperture
and longitudinal obstacle expressions presented in
Section II are also included here. These applications
serve partly to illustrate the use of these relations, but
are also of interest in themselves and were solved orig-
inally in answer to a need. In Section 111, the small aper-
ture formulas are applied first to a round hole located
in the center fin of trough waveguide, and then to an
array of holes coupling two parallel plate waveguides.
It is pointed out there that the latter case is of particu-
lar value in its use in a transverse resonance procedure,
and can be applied, for example, to top wall directional
couplers in rectangular waveguide, or to a periodic ar-
ray of holes in trough waveguide. The small obstacle
formulas are applied in Section IV first to a circular disk
in rectangular waveguide, where the distinctions be-
tween longitudinal and transverse orientations of the
disk are determined, and then to the case of a plane wave
incident at an angle on a two-dimensional array of longi-
tudinal rods. The latter problem is of interest in a study
of anisotropic radomes, since this configuration dis-
criminates between incident waves of parallel and per-
pendicular polarization.

II. SMALL APERTURE AND SMALL
OBSTACLE FORMULAS

A. Preliminary Relations and Definitions of Terms

The incident mode in the waveguide containing the
aperture or obstacle may be characterized by trans-
verse mode functions e and A and by a longitudinal
scalar function ¢ or ¢. These functions and their nor-
malizations are the same as those in the “Waveguide
Handbook;”? expressions for these furnctions for con-
ventional waveguides are also presented there.? The
scalar function ¢ and ¢ are proportional to longitudinal
components of electric and magnetic field, respectively,
so that ¢ =0 for H (or TE) modes and ¥ =0 for E (or
TM) modes. When the mode functions and the scalar
functions are normalized in the manner

[ eens-[f

cross section cross section

ff Pp*dS = 1/k2,

cross section

f f WS = 1/ke,

cross section

h-h*dS =1, (1)

and

)

7 L. B. Felsen of the Polytechnic Institute of Brogklyn has in-
dependently derived a small obstacle formulation which applies also
to unsymmetrical obstacles.

8 Marcuvitz, op. cit., Section 1.2,

¢ Ibid, Chap. II,
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where k.(=2w/\;) is the cutoffil wave number of the
given mode; then the characteristic impedance Z, and
the characteristic admittance Yy are equal to the wave
impedance and admittance, respectively, i.e.,

K
— for E modes
we

Z0=1/Y0=

wp
— for H modes (3)

K

where k(=2n/\,) is the propagation wave number.

It is convenient to employ the symbols ¢, and %, to
represent the longitudinal field components; their rela-
tion to ¢ and ¢ are

Y,

e: = —j— ki’ 4
we
Zo

hg = - j - kc2¢- (5)
W

Since the incident mode field does not vary much over a
small aperture or obstacle, the value of the incident
field is taken to be that at the center of the aperture or
obstacle, and this particular value of the field is denoted
by the subscript 0.

In small aperture theory, the behavior of the aperture
is dependent on the magnetic and electric polarizabili-
ties, M and P, which respond, respectively, to the tan-
gential component(s) of magnetic field and the normal
component of electric field at the aperture. These polar-
izabilities are a function of the shape and size of the
aperture only, and expressions are available for the
polarizabilities of apertures of simple shapes, such as a
circle, ellipse, or long slit.!® Numerical values for other
shapes have been obtained experimentally by Cohn!:12
using an electrolytic tank, thereby enhancing the use-
fulness of small aperture theory. Cohn has also derived
a simple correction formula® for the magnetic polariza-
bility in the case of larger apertures.

The behavior of a small obstacle is sensitive to the
tangential component(s) of electric field and the normal
component(s) of magnetic field at the obstacle. The re-
spective polarizabilities are designated in this paper as
P and M. For a planar obstacle, the numerical values
of P and M are equal to those of M and P, respec-
tively, for an aperture identical in size and shape to the
obstacle. Such an equivalence is generally deduced via
Babinet equivalence considerations, involving a factor

. W C. G. Montgomery, R. H. Dicke, and E. M. Purcell, “Prin-
ciples of Microwave Circuits,” Rad. Lab. Sers., McGraw-Hill Book
Co., Inc., New York, N. Y., vol. 8, p. 178; 1948.

11 S, B. Cohn, “Determination of aperture parameters by electro-
Iytic-tank measurements,” Proc. IRE, vol. 39, pp. 1416-1421; No-
vember, 1951,

25, B. Cohn, “The electric polarizability of apertures of arbitrary
shape,” Proc. IRE, vol. 40, pp. 1069-1071; September, 1952,

8 S, B. Cohn, “Microwave coupling by large apertures,” Proc.
IRE, vol. 40, pp. 696~699; June, 1952.
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of 4, but we choose to place this factor in the expressions
for the equivalent circuit parameters rather than in the
polarizability expressions directly. Expressions for cer-
tain nonplanar obstacles of simple shape are scattered
throughout the literature. 4%

Since the apertures and obstacles treated in this
paper are all symmetrical and lossless, only two inde-
pendent parameters are required for their circuit repre-
sentation. The reactance and susceptance representa-
tions are shown pictorially by the tee and pi networks of
Fig. 1. The parameters are related to the reactance and
susceptance matrix elements by

Xo=Xn— Xun, Xo = Xug
B, = Bu — Bu, By = Bp. (6)

Xa Xq

(a) (b)

Fig. 1—(a) Tee equivalent network. (b) Pi equivalent network.

In the small aperture or obstacle limit, the reactance
and susceptance parameters are very simply related, 7.e.,

X, = !
* 2By
, 1
Xb = - 2B B ’ (7)

where the prime denotes the parameter normalized to
the appropriate characteristic impedance or admittance.
Relations (7) state in essence that the shunt effect and
the series effect of the networks are independent in this
limit. )

In a scattering matrix representation of a symmetrical
aperture or obstacle, only parameters Sy and Si; are in-
dependent. Furthermore, one can write for small aper-
tures or obstacles

Sp=1+o. ®)
Element Siz should actually be expressed as
Sis = 1 s
1—o

so that | Siz| 2< 1, but in the small aperture or obstacle
limit ¢<<1. Elements Si; and ¢ are related to the pi net-
work parameters in this limit as

jBa’ = %(511 + 0), (9)

1 C, Susskind, “Obstacle type artificial dielectrics for micro-
waves,” J. Brit. IRE, vol. 12, p. 49; 1952.

¥ M. M. Z. Kharadly and W. Jackson, “The properties of artificial
dielectrics comprising arrays of conducting elements,” Proc. I.E.E,
{London), Pt. III, vol. 100, pp. 199-212; July, 1953.



1960

or

' 1
[t Ba,,
! [ + 2Bb':|

—j [Ba’ - 2;31,’:" (10)

B. Symmetrical Longitudinal Apertures Coupling Iden-~
tical Waveguides

Longitudinal apertures may be used to couple two
waveguides either in a tee junction fashion or when
placed parallel to each other. In either case, an appropri-
ate equivalent circuit representation is chosen, and by
small aperture theory the parameters of the equivalent
circuit are related to the geometry of the coupling aper-
ture and the coupled waveguides. Equivalent circuits
for several specific examples of these two types are pre-
sented by Marcuvitz.®

When the two coupled waveguides are identical and
are arranged parallel to each other, the form of the
equivalent circuit becomes particularly simple. This
special case corresponds to many practical situations;
it occurs, for example, in various directional coupler
applications and in strip line and trough waveguide dis-
continuities. The longitudinal aperture discussion in this
paper is restricted to this class of structures.

Two typical cases which arise in the coupling of two
parallel identical waveguiding regions are illustrated in
Fig. 2. The coupling behavior for arbitrary field excita-
tion may be expressed in terms of two orthogonal modal
situations, one for which the excitations from the two
separate waveguides are in phase and the second for
which they are out of phase. When the field excitations
in the separate waveguides are opposite to those indi-
cated in Fig. 2, the surface common to the two identical
waveguide regions becomes an electric wall and the
presence of the coupling aperture is not felt. The equiva-
lent circuit for this excitation degenerates into a straight-
through connection for each waveguide separately, with
no coupling between them.

When the excitations in the separate waveguides are
as shown in Fig. 2, the aperture surface becomes a mag-
netic wall and the equivalent circuit is now nontrivial.
Since the two halves of these structures are identical to
each other, the reflection coefficients for each half are
equal and are the same as the reflection coefficient for
both halves taken together. The complete electrical
behavior for this excitation is thus obtained by choosing
a pi or tee network representation, of the form of Fig. 1,
for either half of the structure.

It may be desirable to have available a single equiva-

lent circuit appropriate to both excitations, or, equiva-
lently, to an arbitrary excitation. In that case, a form
such as that shown in Fig. 3 may be used; as seen, the
circuit consists of two pi networks, back to back, bridged
across by an additional element equal to — B,. When the
excitation is such as to produce a magnetic wall in the
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Fig. 2—Longitudinal aperture coupling of identical waveguides. (a)
E plane (top wall) coupling. (b) H plane (side wall) coupling.
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Fig. 3—Equivalent circuit for longitudinal aperture coupling two
identical waveguides, valid for arbitrary excitation.
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aperture, an open circuit is produced along the line
A —A’ in Fig. 3, so that the circuit breaks up into two
separate pi networks, back to back, and element — B,
does not contribute. When the excitation is such as to
produce an electric wall in the aperture, a short circuit
occurs along 4 —A' and the additional element —B,
cancels' the remaining elements to produce straight-
through connections in the separate waveguides.

E Plane (Top Weall) Coupling: The structure appro-
priate to this situation was indicated in Fig. 2(a). The
waves 1n both of the constituent waveguides propagate
along the z direction, and the principal axes of the sym-
metrical coupling aperture are assumed to lie along the
x and z axes. In small aperture theory, the coupling by
the aperture is sensitive to the H,, H,, and E, compo-
nents of the unperturbed fields in the constituent wave-
guides. The expressions for the equivalent circuit param-
eters will therefore contain the M, M., and P, polari-
zabilities in the general case. Only two parameters, B,
and Bs, are needed to specify the complete equivalent
network, either in pi form for the “magnetic wall” exci-
tation or in the form of Fig. 3 which is valid for arbi-
trary excitation. It can be shown that small aperture ex-
pressions for these two parameters, normalized to the
characteristic admittance Y, of either of the identical
coupled waveguides, are

1
By
B, = wMYOMzhzOhtO - waoPa;eyoeTzO-

— — ww V2 Mol (11

(12)

The polarizabilities M/ and P have been discussed in the
previous section, Yy and Zj are defined in (3), and the
mode functions are defined with respect to their nor-
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malizations in (1), (2), (4), and (5). The subscript 0 de-
notes the value of the mode function at the center of the
aperture, and the asterisk means the complex conju-
gate. In the normalizations defined by (1) and (2), the
integrations are performed over either of the two identi-
cal waveguides, but not over both. One sees from (11)
and (12) that By is always inductive, while B,’ can be
either inductive or capacitive.

H Plane (Side Wall) Coupling: A structure corre-
sponding to coupling of this type is shown in Fig. 2(b).
Again, the power flow in both of the constituent wave-
guides is in the 2 direction, and the principal axes of the
coupling aperture lie along the y and 2 directions. In the
most general case, which might arise for some higher
mode, the coupling would be responsive to the H,, H,
and E, components of the unperturbed fields in the sepa-
rate waveguides. For this case the expressions for B,’
and By would be given by (11) and (12) upon replace-
ment of M, and P, by M, and P,. Often, however, this
type of coupling occurs when E, and H, are both zero
in the unperturbed waveguides. Then (11) and (12)
reduce to

1
By
Ba/ = wMY()Mzhzohzo*.

=~ 0 (13)

(19

It is seen from (13) and (14) that fo this order the equiva-
lent circuit reduces to a simple shunt capacitance. The
other elements are actually nonvanishing but generally
can be neglected; they correspond to higher order
(multipole) contributions.®

C. Symmetrical Longitudinal Obstacles

A typical small symmetrical longitudinal obstacle
and an equivalent circuit for it in pi form are shown in
Fig. 4(a) and (b). Since the obstacle is symmetrical,
only two parameters suffice to characterize it com-
pletely. In small obstacle theory, the electrical behavior
of the obstacle is responsive to the tangential compo-
nent(s) of electric field and the normal component(s) of
magrnetic field at the obstacle. As mentioned in Section
II-A, the respective obstacle polarizabilities are desig-
nated in this paper as M and P,

The direction of propagation in the waveguide is de-
noted by 3, with x and y referring to the cross-section co-
ordinates. With these coordinates, small obstacle ex-
pressions for the parameters of the equivalent network
of Fig. 4(b) may be shown to be

% *
B,/ = 2w€Z0[Mx0b3erx0 + MyObeyoeyo]

— 2wuY, [PzObhz()htO] (15)
1
7 = don¥s [P iailiny + Pylyolino]
3
— dweZ, [Mz"bezoefo]- (16)

6 For example, see N. Marcuvitz, op. cit., pp. 379 (2), and 380 (6).
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Fig. 4—Symmetrical longitudinal obstacle. (a) Geometry.
(b) Typical equivalent circuit.

The various quantities appearing in (15) and (16) have
been defined and discussed in Section II-A. In particu-
lar, attention is called to the remarks concerning the
polarizabilities. The transverse mode functions h and e
have been discussed above in their vector form; the
components employed in (15) and (16) are related to
the vector form in the evident manner

h = hxo 4+ hyyo, € = exo + e,50, (17)

where %9 and y, are unit vectors.

Since expressions (15) and (16) are valid for any small
symmetrical, but otherwise general, obstacle, they
should also apply to a transverse planar obstacle of the
type shown in Fig. 5(a). The equivalent circuit for this
transverse obstacle is purely shunt, as seen in Fig. 5(b).
Since the obstacle is now responsive to E,, E,, and H,,
only the M., M, and P,* polarizability components
will be nonvanishing. One then finds from (15) and (16)
for a transverse planar obstacle:

1
- == O’
By

B = 2B, = dweZ o[ M Penesn® + M,y 0ey0*]

— deou¥ o[ P k0" ]. (18)

Result (18) is simply a rephrasing in the notation of
this paper of the well-known result for a transverse
planar obstacle. The factor of 4 arises because the nu-
merical values for M and P%® are equal to those of 41
and P, respectively, for a transverse aperture identical
in size and shape to the obstacle.

III. APPLICATIONS OF SMALL APERTURE FORMULAS
A. Circular Hole in Trough Waveguide

The small aperture expressions are here employed
to evaluate the equivalent circuit parameters of a cir-
cular hole located in the center fin of trough waveguide.
The geometry is illustrated in Fig. 6(a). For the round
hole this type of calculation is usually very good except
when the hole is very large or almost in contact with the
side wall, or is near to the edge of the fin. Since the
trough waveguide is symmetrical, and therefore non-
radiating, and since the hole is located on the center fin,
the equivalent circuit for the hole is purely reactive.
Due to the shape of the hole, the circuit is also sym-
metrical, and may be chosen in the form of the pi net-
work of Fig. 6(b). It will be seen, as implied by Fig.
6(b), that the series element B is always inductive
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Fig. 5—Planar transverse obstacle. (a) Geometry.
(b) Equivalent circuit.
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Fig. 6—Circular hole in center fin of trough waveguide. (a) Geometry.
(b) Equivalent circuit. (¢) Rectangular waveguide approximation
to trough waveguide.

while the shunt arms B, may be inductive or capacitive
depending on the location of the hole (value of d).

The relation between the electric fields in the upper
and lower portions of the trough waveguide in its usual
mode of operation is that indicated in Fig. 2(a). Conse-
quently, (11) and (12) are the appropriate expressions to
use for the determination of B, and B;'. Before these
expressions can be applied, however, one must have
knowledge of the polarizabilities M and P, the quanti-
ties Yy and Z,, and expressions for the mode functions.

For the case of a circular hole, the polarizabilities are

4
M,=M,=—r?
3

Py = — 7, 19)
3

where 7o is the radius of the hole. Since the dominant

mode in trough waveguide is an H (or TE) mode, the

appropriate relations for ¥, and Z, are, from (3),

1 Wi
Z():-—:—“)
Y() K

(20)
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where «(=27/\,) is the propagation wave number.

Because the rigorous mode functions for trough wave-
guide are somewhat involved, a simple approximation is
employed here which is expected to be quite accurate.
The lumped effect of the field distribution away from
the edge of the fin can be very well approximated by
replacing the fin edge with its associated fringing field
by an additional width of fin and a magnetic wall (open
circuit) at the end of this extension, as shown in Fig.
6(c). The structure then becomes two half-sections of
rectangular waveguide, one on top of the other, coupled
by the circular hole. The amount by which the center
fin is extended can be obtained from the knowledge of
the available value for the cutoff wavelength,'”18 since,
as shown in Fig. 6(c), the original fin width plus the ex-
tension must be equal to A./4.

The mode functions & and e can now very readily be
obtained from the equivalence of Iig. 6(c) and the
normalization relations (1) and (2). Noting that the
origin of coordinates is taken at the junction of the fin
with the side wall, we find from an integration over one
of the two halves of the structure that relations (1) and

(2) yield
d@=m@:2ve%ﬁn@?>

o) N /2 (2rx>
x) = — cos [ —
™ @/ b N/’
using A,=2m/k..
The equivalent circuit parameters for the circular
hole can now be found by employing relations (19)—(22)
and (3) in expressions (11) and (12). Noting that the

center of the hole is located at x =d, we obtain after sim-
plification

(21)

(22)

30,
ko (4r0)? sin? k.d

No(2kcr0)? cos? k.d 1 /7k\*
B,/ = P 1— S\ tan? kcd] (24)
7

By = (23)

<

where k,=27/\,, k=27 /\. We also note that & must ex-
ceed k, for propagation. Results (23) and (24) were orig-
inally derived as byproducts in an analysis of periodic
structures in trough waveguide.®

From (24), one sees that B, can be capacitive or in-
ductive, depending upon the frequency and the location
of the hole. The inductive contribution is greater if the
hole is located nearer to the fin edge. For an appropriate
hole location, B.,’=0, and the equivalent circuit be-

17 A. A. Oliner, “Theoretical developments in symmetrical strip
transmission line,” Proc. Symp. on Modern Advances in Microwave
Techniques, Polytechnic Institute of Brooklyn, Brooklyn, N. Y., pp.
387-390; November, 1954,

18 K. S, Packard, “The cutoff wavelength of trough waveguide,”
IRE TraNs,, vol. MTT-6, pp. 455, 456; October, 1958.

19 A, A. Oliner and W. Rotman, “Periodic structures in trough
waveguide,” IRE TraNs, oN MiCROWAVE THEORY AND TECHNIQUES,
vol. MTT-7, pp. 134140, (3) and (4); January, 1959.
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comes a pure series inductance. This condition is, of
course, given by

k= 2k, cot k.d,

1 k
d = — cot™? ( — )
k. 2k

We also note that it is possible at a given frequency
or for a given hole location to obtain a reflectionless dis-
continuity. From (10), d.e., from S =0, we see that a
unity VSWR occurs when

(25)

or

(26)

2k,
b=4/ o~ (27)
3 sin &d
or, alternatively, when
1 2 ke
d = —-sm‘l[ — —:l . (28)
k. 3 k

At these values of % or d the hole introduces only phase
shift.

Numerical values for a typical case are presented in
Fig. 7. The following dimensions [see Fig. 6(a)] have
been taken: 26=1.00 inch, s=1.00 inch, »¢=0.25 inch,
A=3.50 inches; the wavelength chosen corresponds
roughly to midband operation. Fig. 7 presents B, and
By as a function of the location of the hole on the fin.
For these dimensions, one finds d=0.617 inch and d
=0.485 inch to be the hole locations such that the
equivalent circuit is pure series and the hole is non-
reflecting, respectively. Fig. 7 also includes a curve of
VSWR vs hole location,

B. Array of Holes Coupling Parallel Plate Waveguides

In this section, small aperture expressions are em-
ployed to obtain the equivalent circuit parameters for
an array of holes which couples two identical parallel
plate waveguides. The geometry of the configuration
is shown in Fig. 8. As shown, the waves in the parallel
plate guides have oppositely directed electric fields and
are incident on the array of holes at an angle 8 with re-
spect to the x direction. Because of the symmetry of the
structure and the excitation, the equivalent circuit can
be expressed in pi'form and the parameters can be de-
termined by the use of (11) and (12). The equivalent cir-
cuit, in fact, will be seen to be of the form of Fig. 6(b),
with the series element always inductive and the shunt
elements capacitive or inductive, depending on the
angle § of incidence.

The real value in the solution of this problem lies not
in the direct phrasing of it, as given above, but in its
application to the transverse resonance analysis of a
number of waveguiding structures possessing a longi-
tudinal array of holes. For example, if metal plates are
placed at the sides of the structure in Fig. 8, one has a
top wall directional coupler in rectangular waveguide. The
use in a transverse resonance procedure of the equiva-
lent circuit for the array of holes permits the determina-
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Fig. 7—Network parameter values for circular hole
in trough waveguide.
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Fig. 8—Wave incident at angle # on array of holes
coupling parallel plate waveguides.

tion of the properties of the coupler. A second example
is an array of longitudinal holes in trough waveguide.
Again, the results of this section are employed in a
transverse resonance procedure.?’

The TEM waves incident at angle 8 are viewed in this
analysis as being equivalent to H (or TE) waves inci-
dent normally (in the x direction) on the array of holes.
The use of this technique simplifies the determination
of the mode functions. The propagation wave number x
is related to angle 8 as

k= kcos 6, (29)

and all field components experience an exponential vari-
ation of the form exp ( —jk.2), where

k, = ksin 6. (30)

Due to the periodicity of the array of holes, the modes
in the vicinity of the array possess fields which are also
periodic.?* When the holes are sufficiently closely spaced
together, the higher modes are nonpropagating. The
mode functions for the dominant mode, normalized to a
unit cell of the array, are then obtained by integrating
over a unit cell in either the upper or lower portion of
the configuration in the manner of (1) and (2). One
finds, as a result,

20 Thid., see Section II-B., pp. 137-138.
# Marcuvitz, op. cit., pp. 88, 89.
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1
hiz) = ey(s) = ——= e,

Ve (31)

—2k,2

P(2) = (32)

EA/ab

where k,=k,. On use of (5) and (20), since the dominant
mode is an H (or TE) mode, (31) and (32) become

hohs® = eye,® = 1/ab

k\?
(———) 1/ab.
K
When (33), (34), and (20) are used in relations (11) and

(12), with x and z interchanged, expressions for the pi
network parameters become

(33)

hoh* (34)

By = — -2 (35)
’ 2eM,
1
B, = — [M.k2 — P,k?], (36)
abk

where M,, M,, and P, are the magnetic and electric
polarizabilities for an individual hole. In some cases,
close proximity of the holes to each other may produce
mutual coupling effects which will alter the polarizabil-
ity values.

When the problem is phrased in terms of waves inci-
dent at angle 8, (35) and (36) become, on use of (29)
and (30),

ab

B = - —uw—— 37
> 2-RM .cos @ SO
k
B/ = ——— [M,sin?% — P,]. (38)
ab cos 6

One sees from (38) that B, can be either capacitive or
inductive depending on 6.

When the equivalent circuit is to be used in a trans-
verse resonarce context, propagation actually occurs in
the 2 direction so that in (35) and (36) k. become the
propagation wave number (=2x/\,) and k becomes the
transverse wave number k;. Moreover, to be useful in a
transverse resonance context, (35) and (36) must in-
volve k; but not k.. Since k; and k, are related via

k2= k2 + k.2
(35) and (36) become
By = — 2 (39)
T oM,
B,/ = [(, — Pk — M,k2|. (40)

- dbkt

1t is significant that B, involves the free space wave
number % in addition to k. As a result, the transverse
wave number will be frequency dependent, a property
characteristic of periodic structures.
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IV. APPLICATIONS OF SMALL OBSTACLE FORMULAS
A. Circular Disk in Rectangular Waveguide

As a simple illustration of the use of small obstacle
expressions, the equivalent circuit of a centered circu-
lar metallic disk in rectangular waveguide can be exam-
ined for different orientations of the disk. For example,
consider the disk located longitudinally and then trans-
versely, as shown in Figs. 9(a) and (b).
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Fig. 9—Circular disc in rectangular waveguide. (a) Longitudinally
oriented disc. (b) Transversely oriented disk.

The polarizabilities of the circular disk are

4
My = M = — i (41)
P;.;Ob j— i 1’03 (42)

3

for the longitudinal orientation; for the transverse
orientation of Fig. 9(b), M,* and P,* should be re-
placed by M,® and P,®, respectively. The dominant
mode in rectangular waveguide is an H (or TE) mode,
so that its characteristic impedance has the form (20);
the corresponding transverse mode functions are??

2, @
~—— sin — -
a

ha(x) = ey(%) = (43)

The longitudinal magnetic field has a cos (wx/a) de-
pendence, and is therefore zero at the center of the disk
and can be neglected.

The parameters B, and By of the pi network equiva-
lent [see Fig. 4(b) ] of the longitudinally oriented circu-
lar disk are found by employing (41), (42), (43), and
(20) in relations (15) and (16). One finds then that

_471' (21’0)3 )\g

B —_ 44
3 ab A2 “h)
1 47 (270)3
LA @t (43)
Bbl 3 ab?\g

2 [pid., Section 2.2.
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When these same expressions are inserted into (18) one
obtains the following result for the shunt element B’
[see Fig. 4(a) ] of the transversely oriented circular disk:

. 8 (27’0)3 )\g
T3 gb A

BI

(46)

When the two equivalent circuits are compared, it is
seen that the total shunt effect of each isidentical, due to
the electric field component parallel to the disk, while
for the longitudinal orientation an additional series
capacitive element is present, resulting from the com-
ponent of magnetic field normal to the disk. Since the
shunt and series elements have the same sign, one sees
from relation (10) that the VSWR introduced by the
longitudinal orientation is greater than that produced
by the transverse orientation.

B. Array of Longitudinal Rods in Free Space

The infinite two-dimensional array of longitudinal
rods to be analyzed is described in Fig. 10. A plane
wave of so-called parallel polarization is shown in Fig.
10(a) to be incident on the array of rods at angle § with
respect to the z direction. With such a polarization a
component of electric field is set up parallel to the con-
ducting rods, so that the rods exert a significant effect on
the wave. For perpendicular polarization, on the other
hand, a component of magnetic field would be created
parallel to the rods and the wave would be negligibly
affected if the rods were thin. Such a longitudinal array
of rods thus serves to discriminate between the two
polarizations.

For the polarization shown in Fig. 10(a}, the total
field consists of H,, E,, and E, components. The plane
wave incident at angle  thus may be viewed as an E (or
TM) mode incident along the gz direction, with char-
acteristic impedance Z, given by (3) as

Zo= Lok, (47)
Vo (we
with
k = k cos 6. (48)

When the spacing between successive rods is less than
half a free-space wavelength, all the higher modes are
nonpropagating. The mode functions of the dominant
mode, which is the incident wave, normalized to the
unit cell of dimensions e by b, are found by integrating
over the unit cell according to (1) and (2). On use of
(4), the mode functions may be written as

— hy(x) — :_1__:_ —ikz sin @
a

e(x) (49)

—jkz 8in 6 (50)

e(x) =
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Fig. 10—Plane-wave incident on infinite two-dimensional array
of longitudinal rods in free space. (a) Side view. (b) Cross-section
view,

since

k. =k, = b sin 6. (51)

For simplicity, we assume that the rods are thin so
that the only non-negligible polarizability is A4,%, s.e.,
the rods are sensitive only to the longitudinal compo-
nent of electric field. Under these conditions, the equiva-
lent circuit parameters can be evaluated via expressions
(15) and (16), using (47), (49), and (50). One finds that?®

B =
1 87w M0 sin? 6
By abh  cos @

Result (52) states that the equivalent circuit consists
only of a series inductance, the value of which is pro-
portional to the polarizability. It is of interest that the
element is inductive rather than capacitive, since an
array of similar rods transversely oriented would be
characterized by a shunt capacitive equivalent circuit.
An analogous situation arises in connection with slots
whose length is smaller than that required for resonance.
Such a transverse slot in rectangular waveguide is induc-
tive, while the equivalent circuit for this slot cut in the
top wall of rectangular waveguide (a “longitudinal
shunt slot”) is a shunt capacitance.
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