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Practical measurements of unloaded QOfor a gap dis-

tance of 0.42 cm were carried out using the impedance

method,6 and are shown in Table I together with the

corresponding calculated values.

TA13LE I

COMPARISONOFCALCULATEDAND MEASUREDVALUESOF QO

Measured fre-
quency in mega-
cycles per second

1500
1600
1800
1870
1690

Tuning
Measured

Corresponding
position

Qo
theoretical

in centimeters Q,

0.85 1125 47’00
1.55 1280 4950
1.8 1720 5100
2..50 900 4400
3.49 575 2100

As can be expected, the measured values of the un-

loaded QOare about 25 per cent of the theoretical values.

This difference is a usual one in case of QOmeasurements

and is due to losses which are not accountable by the

simple theory. Losses at the shorting end, imperfect

spring contacts, unpolished surfaces, dirt, scratches,

capacitance losses at the gap, no losses etc., account for

this difference.

V. CONCLUSION

The first-order theory of back-to-back tuning has

been derived and shown to agree reasonably well with

the experimental results. Both theory and experiment

show that the resonator tuning characteristic obtainable

by this method is linear for all practical purposes over a

large frequency range. By appropriate design, various

frequency ranges and tuning slopes can be obtained.

The theoretically expected values of unloaded QOare in

the vicinity of 4500, while in actual practice values

around 1200 are obtained in the useful range of linear

tuning.

The method is, in general, applicable to any form of

resonant system where quarter-wave line sections can

be employed. For instance, for frequencies in the VHF

range, the method can be applied with Lecher lines; in

the UHF range, coaxial-type lines are more convenient.

The presence of a capacitive gap makes the system

especially adaptable where interaction with an electron

beam is intended. Due to the simple construction, con-

venient size, nonharmonic modes, and good mode sepa-

ration, this method should hold promise of valuable ap-

plication over a wide frequency spectrum.
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Equivalent Circuits for Small

Longitudinal Apertures and

Symmetrical

Obstacles*
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Sunmary—Formdas based on small aperture and small obstacle
theory are presented for the determination of equivalent circuits for
symmetrical longitudinal apertures and obstacles. These formulas
are then applied to several examples of practical interest, including
aperture dlscontinuities in trough wavegnide and an obstacle array
of interest to anisotropic radomes.

I. INTRODUCTION

T

HE evaluation of equivalent circuits for wave-

guide discontinuities often involves the solution of

“ a boundary value problem of considerable com-

plexity. For the class of so-called ‘{small” apertures and

obstacles, however, this evaluation becomes particu-
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No. AF-19(604)-2031, sponsored by the Air Force Cambridge Re-
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Iarly simple when the problem is properly phrased. A

small aperture or obstacle is one which is located far

from the guide walls and whose dimensions are small

compared to a wavelength. Under these conditions, the

distortion of the field lines in the vicinity of such a small

aperture or obstacle, due to some specified excitation,

is essentially independent of the cross-sectional shape

of the containing waveguide, and depends only on the

nature of the excitation and the physical shape of the

aperture or obstacle. The quantity which characterizes

the aperture or obstacle and which is a function ordy of

its physical geometry and the type of incident excitation

is the polarizability; since the aperture or obstacle is

small compared to wavelength, the polarizability may

be determined under static conditions. The function of

small aperture or obstacle theory is then to relate the

polarizability to the location of the aperture or obstacle

within the containing waveguide and to the appropriate
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incident mode in a fashion such that the equivalent cir-

cuit parameters may be readily evaluated. The value

of this method lies not only in the simple phrasing of the

problem that is permitted, but also in the fact that the

resulting solutions are useful considerably beyond the

strict limitations indicated in the preceding.

Small aperture theory was first formulated by

Bethe, 1,2 and was soon afterwards rephrased by Marcu-

vitz8 in a more compact form particularly suitable for

equivalent circuit evaluations. Transverse apertures

(i.e., apertures located in a metal plate which is coinci-

dent with a waveguide cross-section plane) have been

treated by many workers, both with regard to the power

coupled through the hole and in terms of its shunt

equivalent circuit. It has also been long recognized that

the shunt equivalent circuit for a small transverse ob-

stacle may be obtained by Babinet equivalence con-

siderations from the results for a corresponding small

transverse aperture.

For longitudinal apertures (located in a top or side

wall of a waveguide and employed to couple power be-

tween two neighboring waveguides) the picture is not as

complete. Bethe2 presents formulas for the power cou-

pled between two adjacent waveguides, and these for-

mulas have been used, for example, in directional cou-

pler designs. Expressions for the scattering matrix ele-

ments in multimode waveguide have also been derived4,5

via simple extensions of Bethe’s work. Ihlarcuvitzb pre-

sents equivalents circuits which were obtained by small

aperture methods for several examples of waveguides

coupled by longitudinal apertures. Despite the existence

of these solutions, general small aperture formulas for

the equivalent circuit parameters do not appear any-

where and are not available.

In Section II-B of this paper, general expressions are

presented for the equivalent circuit parameters of a

certain class of small longitudinal apertures, these ex-

pressions being deduced from a knowledge of the scat-

tering matrix elements. The longitudinal apertures con-

sidered here are restricted to symmetrical apertures

coupling identical waveguides; this restricted class ap-
plies to a wide number of cases of practical interest, as is

indicated later.

In contrast to the case of longitudinal apertures, small

obstacle theory applicable to longitt~dinal obstacles has

not been exploited heretofore. Formulas are presented

in Section II-C of this paper which permit the ready

evaluation of the equivalent circuits of small longitu-

1H. A. Bethe, “Lumped Constants for Small I rises,” M. I .T. Rad.
Lab., Cambridge, Mass., Rept. No. 43-22; March, 1943.

aH. A. Bethe, ‘iTheory of Side Windows in waveguides, ” M.1 .T.
Rad. Lab., Cambridge, Mass.! Rept. No. 43-27; April, 1943.

3N. Marcuvitz, “Wavegulde Circuit Theory: Coupling of Wave-
guides by Small Apertures, ” Microwave Res. Inst., Polytechnic
Inst. of Brooklyn, Rept. No. R-157-47, PIB-106; 1947.

1H. A. Judy and D. J. Angelakos, “Mode Selective Directional
Couplers, ” Electronics Res. Lab., University of California, Berkeley,
Ser. No. 60, Issue No. 19; September, 1954.

5L. B. Felsen, “Analysis of Circular Waveguide Modes, ” Micro-
wave Res. Inst., Polytechnic Inst. of Brooklyn, Second Quarterly
Rept., R-394.6-55, PIB-327.6; February, 1955.

~N. Marcuvitz,~C’Waveguide Handbook, ” Rad. Lab. Ser., Mc-
Graw-Hill Book. Co., Inc., New York, N. Y., vol. 10; 1951. See for
example, -Ions 6.6, 6.8-6.10, 7.2-7.5.

dinal obstacles which are symmetrical.~ Since it is felt

that the derivations of these expressions ancl those for

longitudinal apertures are in themselves of lesser inter-

est than the results, and since the derivations do not

contain any new features and are somewhat lengthy,

they are not included here.

Several applications of the small longitudinal aperture

and longitudinal obstacle expressions presented in

Section II are also included here. These applications

serve partly to illustrate the use of these relations, but

are also of interest in themselves and were solved orig-

inally in answer to a need. I n Section I I 1, the small aper-

ture formulas are applied first to a round hole located

in the center fin of trough waveguide, and then to an

array of holes coupling two parallel plate wavegu ides.

It is pointed out there that the latter case is of particu-

lar value in its use in a transverse resonance procedure,

and can be applied, for example, to top w-all directional

couplers in rectangular waveguide, or tc) a periodic ar-

ray of holes in trough waveguide. The small obstacle

formulas are applied in Section IV first to a circular disk

in rectangular waveguide, where the clistinctions be-

tween longitudinal and transverse orientations of the

disk are determined, and then to the case of a plane wave

incident at an angle on a two-dimensional array of longi-

tudinal rods. The latter problem is of interest in a study

of anisotropic radomes, since this configuration dis-

criminates between incident waves of parallel ancl per-

pendicular polarization.

II. SMALL APERTURE AND SMALL

OBSTACLE FORMULAS

A. Preliminary Relations and Definitions of Terms

The incident lmode in the waveguide containing the

aperture or obstacle may be characterized by trans-

verse mode functions e and h and by a longitudinal

scalar function @ or t. These functions and their nor-

malizations are the same as those in the 4~Waveguide

Handbook;” 8 expressions for these functions for con-

ventional waveguides are also presented there. g The

scalar function #1and ~ are proportional to longitudinal

components of electric and magnetic field, respectively,

so that ~ = O for H (or TE) modes and + = O for E (or

TM) modes. When the mode functions and the scalar

functions are normalized in the manner

Jf
~. ~*d~ = Ss h.h*dS = 1, (1)

cr098 section cross section

and

H
cfx$*dS = I/kOt,

cross ae.tion (2)

u
@@dS = I/k.’,

cross section

7 L. B. Felse.n of the Polytechnic Institute of 13rooklyn has in-
dependently derwed a small obstacle formulation which applies ako
to unsymmetrical obstacles.

8 Marcuvitz, op. d.,Section 1.2.
s Hid, chap. II.
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where k.( = 27r/A.) is the cutoff wave number of the

given mode; then the characteristic impedance ZO and

the characteristic admittance YO are equal to the wave

impedance and admittance, respectively, i.e.,

~ for E modes
we

Zo = 1/% =

~lJ
— for H modes (3)
K

where K( = 27r/h~) is the propagation wave number.

It is convenient to employ the symbols e. and L. to

represent the longitudinal field components; their rela-

tion to @ and $ are

Yo
ez=— j — k.%4 (4)

coe

Zo
hz = – j — k.’#. (5)

cop

Since the incident mode field does not vary much over a

small aperture or obstacle, the value of the incident

field is taken to be that at the center of the aperture or

obstacle, and this particular value of the field is denoted

by the subscript O.

In small aperture theory, the behavior of the aperture

is dependent on the magnetic and electric polarizabili-

ties, k?’ and P, which respond, respectively, to the tan-

gential component(s) of magnetic field and the normal

component of electric field at the aperture. These polar-

izabilities are a function of the shape and size of the

aperture only, and expressions are available for the

polarizabilities of apertures of simple shapes, such as a

circle, ellipse, or long slit. 10 Numerical values for other

shapes have been obtained experimentally by Cohnll, 12

using an electrolytic tank, thereby enhancing the use-

fulness of small aperture theory. Cohn has also derived

a simple correction formula13 for the magnetic polariza-

bility in the case of larger apertures.

The behavior of a small obstacle is sensitive to the

tangential component(s) of electric field and the normal

component(s) of magnetic field at the obstacle. The re-

spective polarizabilities are designated in this paper as
Pob and J@b. For a planar obstacle, the numerical values

of POband Mb are equal to those of 11 and P, respec-

tively, for an aperture identical in size and shape to the

obstacle. Such an equivalence is generally deduced via

Babinet equivalence considerations, involving a factor

10C. G. Montgomery, R. H. Dicke, and E. M. Purcellj ‘{Prin-
ciples of Microwave Circuits, ” Rad. Lab. Sers., McGraw-Hall Book
Co., Inc., New York, N. Y., vol. 8, p. 178; 1948.

11S. B. Cohn, ‘{Determination of aperture parameters by electro-

lytic-tank measurements, ” PROC. IRE, vol. 39, pp. 1416-1421; No-
vember, 1951.

M S. B. Cohn, ‘(The electric polarizability of apertures of arbitrary
shape,” PROC. IRE, vol. 40, pp. 1069-1071; September, 1952.

1$S. B. Cohn, “Microwave coupling by large apertures,” PROC.
IRE, vol. 40, pp. 696-699; June, 1952.

of 4, but we choose to place this factor in the expressions

for the equivalent circuit parameters rather than in the

polarizability expressions directly. Expressions for cer-

tain nonplanar obstacles of simple shape are scattered

throughout the literature. 14’15

Since the apertures and obstacles treated in this

paper are all symmetrical and lossless, only two inde-

pendent parameters are required for their circuit repre-

sentation. The reactance and susceptance representa-

tions are shown pictorially by the tee and pi networks of

Fig, 1. The parameters are related to the reactance and

susceptance matrix elements by

x. = Xn – xla, xb = xlz

B. = Bll – B12, Bb = B12. (6)

-%--’=’ T+-
-._!t._X
T TT T

(a) (b)

Fig. l—(a) Tee equivalent network. (b) Pi equivalent network.

In the small aperture or obstacle limit, the reactance

and susceptance parameters are very simply related, Le.,

jyal=-L
2Bb’

1
xb’=— —

2BU’ ‘
(7)

where the prime denotes the parameter normalized to

the appropriate characteristic impedance or admittance.

Relations (7) state in essence that the shunt effect and

the series effect of the networks are independent in this

limit.

In a scattering matrix representation of a symmetrical

aperture or obstacle, only parameters S11and S12 are in-

dependent. Furthermore, one can write for small aper-

tures or obstacles

S12=1+U. (8)

Element Slz should actually be expressed as

1
s12 . —

l–a’

so that I Slz 12<1, but in the small aperture or obstacle

limit u<<I. Elements & and u are related to the pi net-

work parameters in this limit as

1
jBb’ = —

Sll – u
jB.’ = - +(s,, + a), (9)

14 C. Susskind, “Obstacle type artificial dielectrics for micro-
waves,” J. Brit. IRE, vol. 12, p. 49; 1952.

16M. M. Z. Kharadly and W. Jacksont “The properties of artificial

dielectrics comprising arrays of conducting elements, ” P70c. I.E.E.
(London), Pt. 111, vol. 100, pp. 199-212; July, 1953.
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or

“’’-’Pa’+&’]
“= -+’-+] ’10)

B. Symmetrical Longitudinal Apertures Coupling Iden-

tical Waveguides

Longitudinal apertures may be used to couple two

waveguides either in a tee junction fashion or when

placed parallel to each other. In either case, an appropri-

ate equivalent circuit representation is chosen, and by

small aperture theory the parameters of the equivalent

circuit are related to the geometry of the coupling aper-

ture and the coupled waveguides. Equivalent circuits

for several specific examples of these two types are pre-

sented by Marcuvitz.6

When the two coupled waveguides are identical and

are arranged parallel to each other, the form of the

equivalent circuit becomes particularly simple. This

special case corresponds to many practical situations;

it occurs, for example, in various directional coupler

applications and in strip line and trough waveguide dis-

continuities. The longitudinal aperture discussion in this

paper is restricted to this class of structures.

Two typical cases which arise in the coupling of two

parallel identical waveguiding regions are illustrated in

Fig. 2. The coupling behavior for arbitrary field excita-

tion may be expressed in terms of two orthogonal modal

situations, one for which the excitations from the two

separate waveguides are in phase and the second for

which they are out of phase. When the field excitations

in the separate waveguides are opposite to those indi-

cated in Fig. 2, the surface common to the two identical

waveguide regions becomes an electric wall and the

presence of the coupling aperture is not felt. The equiva-

lent circuit for this excitation degenerates into a straight-

through connection for each waveguide separately, with

no coupling between them.

When the excitations in the separate waveguides are

as shown in Fig. 2, the aperture surface becomes a mag-

netic wall and the equivalent circuit is now nontrivial,

Since the two halves of these structures are identical to

each other, the reflection coefficients for each half are

equal and are the same as the reflection coefficient for

both halves taken together. The complete electrical

behavior for this excitation is thus obtained by choosing

a pi or tee network representation, of the form of Fig. 1,

for either half of the structure.
It may be desirable to have available a single equiva-

lent circuit appropriate to both excitations, or, equiva-

lently, to an arbitrary excitation. In that case, a form

such as that shown in Fig. 3 may be used; as seen, the

circuit consists of two pi networks, back to back, bridged

across by an additional element equal to —B=. When the

excitation is such as to produce a magnetic wall in the

‘z

(a) (b)

Fig. 2—Longitudinal aperture coupling of identical waveguides. (a)
E plane (top wall) coupling. (b) H plane (side wall) coupling.

*

% -280
Ba

A + A’

2Bb

Ba - 2B0 Ba

Fig. 3—Equivalent circuit for longitudinal aperture coupling two
identical waveguides, valid for arbitrary excitation.

aperture, an open circuit is produced along the line

A – A’ in Fig. 3, so that the circuit breaks up into two

separate pi networks, back to back, and element —B.

does not contribute. When the excitaticm is such as to

produce an electric wall in the aperture,, a short circuit

occurs along A —A‘ and the additional element —Ba

cancels the remaining elements to produce straight-

through connections in the separate waveguides.
.E Plane ( ToP Wall) Coupling: The structure appro-

priate to this situation was indicated in Fig. 2(a). The

waves in both of the constituent waveguides propagate

along the z direction, and the principal axes of the sym-

metrical coupling aperture are assumed to lie along the

x and z axes. In small aperture theory, the coupling by

the aperture is sensitive to the Hz, H,, and EU compo-

nents of the unperturbed fields in the constituent wave-

guides. The expressions for the equivalent circuit param-

eters will therefore contain the Jlz, .JI,, and P? polari-

zabilities in the general case. Only two parameters, B.

and B5, are needed to specify the complete equivalent

network, either in pi form for the “magnetic wall’Y exci-

tation or in the form of Fig. 3 which is valid for arbi-

trary excitation. It can be shown that small aperture ex-

pressions for these two parameters, normalized to the

characteristic admittance Y. of either of the identical

coupled waveguides, are

1
wp Y02 M&hzOli:O

Bb’ = –
(11)

The polarizabilities ilZ and P have been discussed in the

previous section, YO and ZO are defined in (3), and the

mode functions are defined with respect to their nor-
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realizations in (1), (2), (4), and (5), The subscript O de-

notes the value of the mode function at the center of the

aperture, and the asterisk means the complex conj u-

gate. In the normalizations defined by (1) and (2), the

integrations are performed over either of the two identi-

cal waveguides, but not over both. One sees from (11)

and (12) that Bb’ is always inductive, while B.’ can be

either inductive or capacitive.

H Plane (Side Wall) CowplitLg: A structure corre-

sponding to coupling of this type is shown in Fig. 2(b).

Again, the power flow in both of the constituent wave-

guides is in the z direction, and the principal axes of the

coupling aperture lie along the y and z directions. In the

most general case, which might arise for some higher

mode, the coupling would be responsive to the Hu, H,,

and E, components of the unperturbed fields in the sepa-

rate waveguides. For this case the expressions for B.’

and Bb’ would be given by (11) and (12) upon replace-

ment of JIZ and Pv by iVv and P.. Often, however, this

type of coupling occurs when Eo and H~ are both zero

in the unperturbed waveguides. Then (11) and (12)

reduce to

1
—z o
&’

Bar = cOpYoM.h$Oh,o*.

(13)

(14)

It is seen from (13) and (14) that to this orde~ the equiva-

lent circuit reduces to a simple shunt capacitance. The

other elements are actually nonvanishing but generally

can be neglected; they correspond to higher order

(multipole) contributions.”

C. Symmetrical Longitudinal Obstacles

A typical small symmetrical longitudinal obstacle

and an equivalent circuit for it in pi form are shown in

Fig. 4(a) and (b). Since the obstacle is symmetrical,

only two parameters suffice to characterize it com-

pletely. In small obstacle theory, the electrical behavior

of the obstacle is responsive to the tangential conlpo-

nent(s) of electric field and the normal component(s) of

magnetic field at the obstacle. As mentioned in Section

II-A, the respective obstacle polarizabilities are desig-

nated in this paper as Mb and POb.

The direction of propagation in the waveguide is de-
noted by z, with x and y referring to the cross-section co-

ordinates. With these coordinates, small obstacle ex-

pressions for the parameters of the equivalent network

of Fig. 4(b) may be shown to be

1
4c0PY. [Pz”bhzoh;o + PuObhuoh;o]

%=

— 4acZ0 [M=ObeZOe~~]. (16)

16For ~xamPIe,seeN. Marcuvitz, op. cit., pp. 379 (2), and 380 (6).

--+---- -l--a--

~ I I
T TT

(a) (b)

Fig. 4—Symmetrical longitudinal obstacle. (a) Geometry.
(b) Typical equivalent circuit.

The various quantities appearing in (15) and (16) have

been defined and discussed in Section II-A. In particu-

lar, attention is called to the remarks concerning the

polarizabilities. The transverse mode functions h and e

have been discussed above in their vector form; the

components employed in (15) and (16) are related to

the vector form in the evident manner

h = h~xo + IZUYO,e = ezxo + e~yo, (17)

where X. and yo are unit vectors.

Since expressions (15) and (16) are valid for any small

symmetrical, but otherwise general, obstacle, they

should also apply to a transverse planar obstacle of the

type shown in Fig. 5(a). The equivalent circuit for this

transverse obstacle is purely shunt, as seen in Fig. 5(b).

Since the obstacIe is now responsive to Ez, EU, and H.,

only the illsob, lllgob, and Pzobpolarizability components

will be nonvanishing. One then finds from (15) and (16)

for a transverse planar obstacle:

1
—. l-l
Bb’ “

B’ = 2B=’ = 4c0eZo[MZObezoeZo*+ MVObeVoeVo*]

— 4up% [Pa”% zohzo*]. (18)

Result (18) is simply a rephrasing in the notation of

this paper of the well-known result for a transverse
planar obstacle. The factor of 4 arises because the nu-

merical values for Mob and PObare equal to those of M

and P, respectively, for a transverse aperture identical

in size and shape to the obstacle.

III. APPLICATIONS OF SMALL APERTURE FORMULAS

A. Cinwlar Hole in Trough Waveguide

The small aperture expressions are here employed

to evaluate the equivalent circuit parameters of a cir-

cular hole located in the center fin of trough waveguide.

The geometry is illustrated in Fig. 6(a). For the round

hole this type of calculation is usually very good except

when the hole is very large or almost in contact with the

side wall, or is near to the edge of the fin. Since the

trough waveguide is symmetrical, and therefore non-

radiating, and since the hole is located on the center fin,

the equivalent circuit for the hole is purely reactive,

Due to the shape of the hole, the circuit is also sym-

metrical, and may be chosen in the form of the pi net-

work of Fig. 6(b). It will be seen, as implied by Fig.

6(b), that the series element Bb is always inductive
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1 I

1 T T

(:) (b)

Fig. 5—Planar transverse obstacle. (a) Geometry,
(b) Equivalent circuit.

(a)

I
e

I .
-r T

(b)

Fig. 6—Cir~ular hole-in ~enter fin of trough waveguide. (a) Geometry.
(b) Equivalent en-cult. (c) Rectangular waveguide approximation
to trough waveguide.

while the shunt arms B. may be inductive or capacitive

depending on the location of the hole (value of d).

The relation between the electric fields in the upper

and lower portions of the trough waveguide in its usual

mode of operation is that indicated in Fig. 2(a). Conse-

quently, (11) and (12) are the appropriate expressions to

use for the determination of B.’ and Bb’. Before these

expressions can be applied, however, one must have

knowledge of the polarizabilities 31 and P, the quanti-

ties YO and 20, and expressions for the mode functions.

For the case of a circular hole, the polarizabilities are

ilI. =Mz =+3

where YOis the radius of the hole. Since the dominant

mode in trough waveguide is an H (or TE) mode, the

appropriate relations for YO and 20 are, from (3),

(20)

where K( = 2T/10) is the propagation wave number.

Because the rigorous mode functions for trough wave-

guide are somewhat involved, a simple approximation is

employed here which is expected to be quite accurate.

The lumped effect of the field distribution away from

the edge of the fin can be very well approximated by

replacing the fin edge with its associated fringing field

by an additional width of fin and a magnetic wall (open

circuit) at the end of this extension, as shown in Fig.

6(c). The structure then becomes two half-sections of

rectangular waveguide, one on top of the other, coupled

by the circular hole. The amount by which the center

fin is extended can be obtained from the knowledge of

the available value for the cutoff wavelen gth}7,18 si rice,

as shown in Fig. 6(c), the original fin width plus the ex-

tension must be equal to 1./4.

The mode functions h and e can now very readily be

obtained from the equivalence of Fig. 6(c) and the

normalization relations (1) and (2). Noting that the

origin of coordinates is taken at the junction of the fin

with the side wall, we find from an integration over one

of the two halves of the structure that relations (1) and

(2) yield

(22)

using & = 27r/k,.

The equivalent circuit parameters fcu- the circular

hole can now be found by employing relations (19)--(22)

and (5) in expressions (11) and (12). Noting that the

center of the hole is located at z = d, we obtain after sim-

plification

3bh,
Bh’ = –

k,(4ro) 3 sin’ k.d
(23)

ho(2kCrO)3 COS2k.d
B=’ =

37r2b [1 -+(wan’kcdl ’24)

where k,= 27r/&, k = 21r/A. We also note that k mu~st ex-

ceed k. for propagation. Results (23) and (24) were orig-

inally derived as byproducts in an analysis of periodic

structures in trough waveguide. 19

From (24), one sees that B.’ can be capacitive or in-

ductive, depending upon the frequency and the location

of the hole. The inductive contribution is greater if the

hole is located nearer to the fin edge. For an appropriate

hole location, Ba’ = O, and the equivalent circuit be-

17Pi. A. Oliner, “Theoretical developments in symmetrical strip
transmission fine, ” Proc. Symp. on Modern Advances in Llicrowave
Techniques, Polytechnic Institute of Brooklyn, Brooklyn, N. Y., pp.
387–390; November, 1954.

la K. S. packard, “The cutoff wavelength of trough Waveguide, ”

IRE TRANS., vol. MTT-6, pp. 455, 456; October, 1958.
‘o A. A. Oliner and W. Rotman, “Perio{lc structures in trough

waveguide,” IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES,
vol. MTT-7, pp. 134–140, (3) and (4); January, 1959.
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comes a @Ye series inductance. This condition is, of

course, given by

k = d~kc cot ked, (25)

or
k

()
d = +- cot–l —

. ~~kc “
(26)

We also note that it is possible at a given frequency

or for a given hole location to obtain a ?ejlectionless dis-

continuity. From (10), i.e., from SII = O, we see that a

unity VSWR occurs when

or, alternatively, when

‘=;s’”-l[$%l“

(27)

(28)

At these values of k or d the hole introduces only phase

shift.

Numerical values for a typical case are presented in

Fig. 7. The following dimensions [see Fig. 6(a)] have

been taken: 2b= 1.00 inch, s= 1.00 inch, rO=O.25 inch,

h = 3.50 inches; the wavelength chosen corresponds

roughly to midband operation. Fig. 7 presents B.’ and

%$’ as a function of the location of the hole on the fin.

For these dimensions, one finds d= 0.617 inch and d

=0.485 inch to be the hole locations such that the

equivalent circuit is pure series and the hole is non-

reflecting, respectively. Fig. 7 also includes a curve of

VSWR vs hole location,

B. Array of Holes Coupling Parallel Plate Waveguides

In this section, small aperture expressions are em-

ployed to obtain the equivalent circuit parameters for

an array of holes which couples two identical parallel

plate waveguides. The geometry of the configuration

is shown in Fig. 8. As shown, the waves in the parallel

plate guides have oppositely directed electric fields and

are incident on the array of holes at an angle O with re-

spect to the x direction. Because of the symmetry of the

structure and the excitation, the equivalent circuit can

be expressed in pi form and the parameters can be de-

termined by the use of (11) and (12), The equivalent cir-
cuit, in fact, will be seen to be of the form of Fig. 6(b),

with the series element always inductive and the shunt

elements capacitive or inductive, depending on the

angle O of incidence.

The real value in the solution of this proble~m lies not

in the direct phrasing of it, as given above, but in its

application to the transverse resonance analysis of a

number of waveguiding structures possessing a longi-

tudinal array of holes. For example, if metal plates are

placed at the sides of the structure in Fig. 8, one has a

top wall directional coupler in rectangular waveguide. The

use in a transverse resonance procedure of the equiva-

lent circuit for the array of holes permits the determina-

1,20

,.$0

1.00

Fig. 7—Network parameter values for circular hole
in trough waveguide.
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Fig. 8—Wave incident at angle 0 on array of holes
coupling parallel plate waveguides.

tion of the properties of the coupler. A second example

is an array of longitudinal holes in trough waveguide.

Again, the results of this section are employed in a

transverse resonance procedure. 20

The TEM waves incident at angle 6’ are viewed in this

analysis as being equivalent to H (or TE) waves inci-

dent normally (in the ~ direction) on the array of holes.

The use of this technique simplifies the determination

of the mode functions. The propagation wave number K

is related to angle Oas

ti=kcose, (29)

and all field components experience an exponential vari-

ation of the form exp ( —jk,z), where

Due to the periodicity of the array of holes, the modes

in the vicinity of the array possess fields which are also

periodic. 21When the holes are sufficient y closely spaced

together, the higher modes are nonpropagating. The

mode functions for the dominant mode, normalized to a

unit cell of the array, are then obtained by integrating

over a unit cell in either the upper or lower portion of

the configuration in the manner of (1) and (2). One

finds, as a result,

zoWd SeeSection II-B., pp. 137–1 38.
21 Mar&vitz, OP. cit., pp. 88, 89.
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IV. APPLICATIONS OF SMALL OBSTACLE, FORMULAS
(31)

(32)

A. Circular Disk in Rectangular Wavegde

As a simple illustration of the use of small obstacle

expressions, the equivalent circuit of a centered circu-

lar metallic disk in rectangular waveguide can be exam-

ined for different orientations of the disk. For example,

consicler the disk located longitudinally and then trans-

versely, as shown in Figs. 9(a) and (b).

where k.= k,. On use of (5) and (20), since the dominant

mode is an H (or TE) mode, (31) and (32) become

kfih,+ = eueu* = l/ah (33)

()hxhz’ = 5 2 l/ah.
K

(34)
E~@;+z ,/:xI Ii

LONGITUDINAL VIEW CROSS-SECTION VIEW
When (33), (34), and (20) are used in relations (11) and

(12), with x and z interchanged, expressions for the pi

network parameters become (a)

ab
Bb’=– —

2K~g
(35)

B.’ = + [M.zk.2 – Pvk2], (36)
LONGITUDINAL VIEW CROSS- sECTION VIEW

(b)
where JMZ, JMZ, and PV are the magnetic and electric

polarizabilities for an individual hole. In some cases,

close proximity of the holes to each other may produce

mutua~ coupling effects which will alter the polarizabil-

ity values.

When the problem is phrased in terms of waves inci-

dent at angle O, (35) and (36) become, on use of (29)

and (30),

F’ig. 9—Circular disc in rectangular waveguide. (a) Longitudinally
oriented disc. (b) Transversely oriented disk.

The polarizabilities of the circular disk are

ab
~b’ = –

2kMz COS $

(37) (42)

Bar =
ab ~OS o ‘M” ‘in’~ – PU].

(38) for the longitudinal orientation; for the transverse

orientation of Fig. 9(b), MgO~ and Pzob should be re-

placed by ibf.ob and Pzoh, respectively. The dominant

mode in rectangular waveguide is an H (or TE) mode,

so that its characteristic impedance has the form (20);

the corresponding transverse mode functions arezz

One sees from (38) that B.’ can be either capacitive or

inductive depending on (3.

When the equivalent circuit is to be used in a trans-

verse resonance context, propagation actually occurs in

the z direction so that in (35) and (36) k, become the

propagation wave number ( = 27r/ho) and K becomes the

transverse wave number kt. Moreover, to be useful in a

transverse resonance context, (35) and (36) must in-

volve k~ but not &. Since k~ and k. are related via

‘v”-2- 7rx
ha(z) = e,(z) = — sin -— s (43)

ab a

The longitudinal magnetic field has a cos (~%/a) de-

pendence, and is therefore zero at the center of the disk

and can be neglected,

The parameters B.’ and B; of the pi network equiva-

lent [see Fig. 4(b) ] of the longitudinally oriented circu-

lar disk are found by employing (41), (42), (43), and

(20) in relations (15) and (16). One finds then that

k2 = kt2 + k,2,

(35) and (36) become

ab
B;=–—

2kJIz
(39)

(44)
B.’ = & [(M, – PV)k2 – Mzk,2]. (40)

1 4n’ (2?’0)3
—. — — .

B; 3 abh,
(45)It is significant that B.’ involves the free space wave

number k in addition to kt. As a result, the transverse

wave number will be frequency dependent, a property

characteristic of periodic structures.
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When these same expressions are inserted into (18) one

obtains the following result for the shunt element B’

[see Fig. 4(a) ] of the transversely oriented circular disk:

(46)

When the two equivalent circuits are compared, it is

seen that the total shunt effect of each is identical, due to

the electric field component parallel to the disk, while

for the longitudinal orientation an additional series

capacitive element is present, resulting from the com-

ponent of magnetic field normal to the disk. Since the

shunt and series elements have the same sign, one sees

from relation (10) that the VSWR introduced by the

longitudinal orientation is greater than that produced

by the transverse orientation.

B. Away of Longitl~dinal Rods in Free Space

The infinite two-dimensional array of longitudinal

rods to be analyzed is described in Fig. 10. A plane

wave of so-called parallel polarization is shown in Fig.

10(a) to be incident on the array of rods at angle 6 with

respect to the z direction. With such a polarization a

component of electric field is set up parallel to the con-

ducting rods, so that the rods exert a significant effect on

the wave. For perpendicular polarization, on the other

hand, a component of magnetic field would be created

parallel to the rods and the wave would be negligibly

affected if the rods were thin. Such a longitudinal array

of rods thus serves to discriminate between the two

polarizations.

For the polarization shown in Fig. 10(a), the total

field consists of H., Ez, and Ez components. The plane

wave incident at angle 6 thus may be viewed as an E (or

TM) mode incident along the z direction, with char-

acteristic impedance ZO given by (3) as

(47)

with

K=hcos O. (48)

When the spacing between successive rods is less than

half a free-space wavelength, all the higher modes are

nonpropagating. The mode functions of the dominant
mode, which is the incident wave, normalized to the

unit cell of dimensions a by b, are found by integrating

over the unit cell according to (1) and (2). On use of

(4), the mode functions may be written as

tan e
eg($) =’— j — e–i.bx sin 8

4Z

(50)

~- -
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Fig. 10—Plane-wave incident on infinite two-dimensional array
of longitudinal rods in free space. (a) Side view. (b) Cross-section
view.

since

h.=kz=k sine. (51)

For simplicity, we assume that the rods are thin so

that the only non-negligible polarizability is il~,ob, -i.e.,

the rods are sensitive only to the longitudinal compo-

nent of electric field. Under these conditions, the equiva-

lent circuit parameters can be evaluated via expressions

(15) and (16), using (47), (49), and (50). One finds that”

1 8iTM80b sinz @
—— . X’. ——___

Bb’
(52)

abh cos e

Result (52) states that the equivalent circuit consists

only of a series inductance, the value of which is pro-

portional to the polarizability. It is of interest that the

element is inductive rather than capacitive, since an

array of similar rods transversely oriented would be

characterized by a shunt capacitive equivalent circuit,

An analogous situation arises in connection with slots

whose length is smaller than that required for resonance.

Such a transverse slot in rectangular waveguide is induc-

tive, while the equivalent circuit for this slot cut in the
top wall of rectangular waveguide (a “longitudinal

shunt slot”) is a shunt capacitance.
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